Sources of absorption and scattering contrast for near-infrared optical mammography.
نویسندگان
چکیده
RATIONALE AND OBJECTIVES Near-infrared (NIR) diffuse optical spectroscopy and imaging may enhance existing technologies for breast cancer screening, diagnosis, and treatment. NIR techniques are based on sensitive, quantitative measurements of functional contrast between healthy and diseased tissue. In this study, the authors quantified the origins of this contrast in healthy breasts. MATERIALS AND METHODS A seven-wavelength frequency-domain photon migration probe was used to perform noninvasive NIR measurements in the breasts of 28 healthy women, both pre- and postmenopausal, aged 18-64 years. A diffusive model of light transport quantified oxygenated and deoxygenated hemoglobin, water, and lipid by their absorption signatures. Changes in the measured light-scattering spectra were quantified by means of a "scatter power" parameter. RESULTS Substantial quantitative differences were observed in both absorption and scattering spectra of breast as a function of subject age. These physiologic changes were consistent with long-term hormone-dependent transformations that occur in breast. Instrument response was not adversely affected by subject age or menopausal status. CONCLUSION These measurements provide new insight into endogenous optical absorption and scattering contrast mechanisms and have important implications for the development of optical mammography. NIR spectroscopy yields quantitative functional information that cannot be obtained with other noninvasive radiologic techniques.
منابع مشابه
Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods.
We present a method for the noninvasive determination of the size, position, and optical properties (absorption and reduced scattering coefficients) of tumors in the human breast. The tumor is first detected by frequency-domain optical mammography. It is then sized, located, and optically characterized by use of diffusion theory as amodel for the propagation of near-infrared light in breast tis...
متن کاملQuantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملAssessing the future of diffuse optical imaging technologies for breast cancer management.
Diffuse optical imaging (DOI) is a noninvasive optical technique that employs near-infrared (NIR) light to quantitatively characterize the optical properties of thick tissues. Although NIR methods were first applied to breast transillumination (also called diaphanography) nearly 80 years ago, quantitative DOI methods employing time- or frequency-domain photon migration technologies have only re...
متن کاملImproving 3-D Imaging Breast Cancer Diagnosis Systems Using a New Method for Placement of Near-Infrared Sources and Detectors
The objective of this research was to improve 3-D imaging system by near-infrared light emission in breast tissue to achieve a more accurate diagnosis of tumor. The results of repeated experiments in this research have shown that with this imaging system, a more accurate diagnosis of abnormal area depends on the location of the sources and detectors. Therefore, an optimal location model has bee...
متن کاملChromophore concentrations, absorption and scattering properties of human skin in-vivo.
Absorption and reduced scattering coefficients of in-vivo human skin provide critical information on non-invasive skin diagnoses for aesthetic and clinical purposes. To date, very few in-vivo skin optical properties have been reported. Previously, we reported absorption and scattering properties of in-vivo skin in the wavelength range from 650 to 1000 nm using the diffusing probe in the "modifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Academic radiology
دوره 8 3 شماره
صفحات -
تاریخ انتشار 2001